1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
| #!/usr/bin/python # -*- coding: UTF-8 -*-
import math import torch from torch import nn from d2l import torch as d2l import pandas as pd
from DotProductAttention import * from EncoderDecoder import * from MultiHeadAttention import * from PositionalEncoding import *
#kid stuff ok class PositionWiseFFN(nn.Module): """基于位置的前馈网络""" def __init__(self, ffn_num_input, ffn_num_hiddens, ffn_num_outputs, **kwargs): super(PositionWiseFFN, self).__init__(**kwargs) self.dense1 = nn.Linear(ffn_num_input, ffn_num_hiddens) self.relu = nn.ReLU() self.dense2 = nn.Linear(ffn_num_hiddens, ffn_num_outputs)
def forward(self, X): return self.dense2(self.relu(self.dense1(X)))
# ok class AddNorm(nn.Module): """残差连接后进行层规范化""" def __init__(self, normalized_shape, dropout, **kwargs): super(AddNorm, self).__init__(**kwargs) self.dropout = nn.Dropout(dropout) self.ln = nn.LayerNorm(normalized_shape)
def forward(self, X, Y): return self.ln(self.dropout(Y) + X)
# ok class EncoderBlock(nn.Module): """Transformer编码器块""" def __init__(self, key_size, query_size, value_size, num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens, num_heads, dropout, use_bias=False, **kwargs): super(EncoderBlock, self).__init__(**kwargs) self.attention = MultiHeadAttention( key_size, query_size, value_size, num_hiddens, num_heads, dropout, use_bias) self.addnorm1 = AddNorm(norm_shape, dropout) self.ffn = PositionWiseFFN( ffn_num_input, ffn_num_hiddens, num_hiddens) self.addnorm2 = AddNorm(norm_shape, dropout)
def forward(self, X, valid_lens): Y = self.addnorm1(X, self.attention(X, X, X, valid_lens)) return self.addnorm2(Y, self.ffn(Y))
# ok class TransformerEncoder(d2l.Encoder): """Transformer编码器""" def __init__(self, vocab_size, key_size, query_size, value_size, num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens, num_heads, num_layers, dropout, use_bias=False, **kwargs): super(TransformerEncoder, self).__init__(**kwargs) self.num_hiddens = num_hiddens self.embedding = nn.Embedding(vocab_size, num_hiddens) self.pos_encoding = PositionalEncoding(num_hiddens, dropout) self.blks = nn.Sequential() for i in range(num_layers): self.blks.add_module("block"+str(i), EncoderBlock(key_size, query_size, value_size, num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens, num_heads, dropout, use_bias))
def forward(self, X, valid_lens, *args): # 因为位置编码值在-1和1之间, # 因此嵌入值乘以嵌入维度的平方根进行缩放, # 然后再与位置编码相加。 X = self.pos_encoding(self.embedding(X) * math.sqrt(self.num_hiddens)) self.attention_weights = [None] * len(self.blks) for i, blk in enumerate(self.blks): X = blk(X, valid_lens) self.attention_weights[ i] = blk.attention.attention.attention_weights return X
class DecoderBlock(nn.Module): """解码器中第i个块""" def __init__(self, key_size, query_size, value_size, num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens, num_heads, dropout, i, **kwargs): super(DecoderBlock, self).__init__(**kwargs) self.i = i self.attention1 = MultiHeadAttention( key_size, query_size, value_size, num_hiddens, num_heads, dropout) self.addnorm1 = AddNorm(norm_shape, dropout) self.attention2 = MultiHeadAttention( key_size, query_size, value_size, num_hiddens, num_heads, dropout) self.addnorm2 = AddNorm(norm_shape, dropout) self.ffn = PositionWiseFFN(ffn_num_input, ffn_num_hiddens, num_hiddens) self.addnorm3 = AddNorm(norm_shape, dropout)
def forward(self, X, state): enc_outputs, enc_valid_lens = state[0], state[1] # 训练阶段,输出序列的所有词元都在同一时间处理, # 因此state[2][self.i]初始化为None。 # 预测阶段,输出序列是通过词元一个接着一个解码的, # 因此state[2][self.i]包含着直到当前时间步第i个块解码的输出表示 if state[2][self.i] is None: key_values = X else: key_values = torch.cat((state[2][self.i], X), axis=1) state[2][self.i] = key_values if self.training: batch_size, num_steps, _ = X.shape # dec_valid_lens的开头:(batch_size,num_steps), # 其中每一行是[1,2,...,num_steps] dec_valid_lens = torch.arange( 1, num_steps + 1, device=X.device).repeat(batch_size, 1) else: dec_valid_lens = None
# 自注意力 X2 = self.attention1(X, key_values, key_values, dec_valid_lens) Y = self.addnorm1(X, X2) # 编码器-解码器注意力。 # enc_outputs的开头:(batch_size,num_steps,num_hiddens) Y2 = self.attention2(Y, enc_outputs, enc_outputs, enc_valid_lens) Z = self.addnorm2(Y, Y2) return self.addnorm3(Z, self.ffn(Z)), state
class TransformerDecoder(d2l.AttentionDecoder): def __init__(self, vocab_size, key_size, query_size, value_size, num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens, num_heads, num_layers, dropout, **kwargs): super(TransformerDecoder, self).__init__(**kwargs) self.num_hiddens = num_hiddens self.num_layers = num_layers self.embedding = nn.Embedding(vocab_size, num_hiddens) self.pos_encoding = PositionalEncoding(num_hiddens, dropout) self.blks = nn.Sequential() for i in range(num_layers): self.blks.add_module("block"+str(i), DecoderBlock(key_size, query_size, value_size, num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens, num_heads, dropout, i)) self.dense = nn.Linear(num_hiddens, vocab_size)
def init_state(self, enc_outputs, enc_valid_lens, *args): return [enc_outputs, enc_valid_lens, [None] * self.num_layers]
def forward(self, X, state): X = self.pos_encoding(self.embedding(X) * math.sqrt(self.num_hiddens)) self._attention_weights = [[None] * len(self.blks) for _ in range (2)] for i, blk in enumerate(self.blks): X, state = blk(X, state) # 解码器自注意力权重 self._attention_weights[0][ i] = blk.attention1.attention.attention_weights # “编码器-解码器”自注意力权重 self._attention_weights[1][ i] = blk.attention2.attention.attention_weights return self.dense(X), state
@property def attention_weights(self): return self._attention_weights
|